import os
import pickle as cP
import joblib as jl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
import pickle
import librosa
from IPython.display import Image
from IPython.display import YouTubeVideo
def pickleload(fp):
with open(fp, 'rb') as f:
return pickle.load(f)
files_dir = './files_song_versions/'
emo_names = ['valence', 'energy', 'tension', 'anger', 'fear', 'happy', 'sad', 'tender']
Image('files_song_versions/hurt_yt_1.png')
Image('files_song_versions/hurt_yt_comment.png')
YouTubeVideo('kPz21cDK7dg', height=100)
YouTubeVideo('vt1Pwfnh5pc', height=100)
Image('files_song_versions/net.png')
Mid-level: 'melody', 'articulation', 'rhythm_complexity', 'rhythm_stability', 'dissonance', 'tonal_stability', 'minorness'
Soundtracks: 'valence', 'energy', 'tension', 'anger', 'fear', 'happy', 'sad', 'tender'
Image('files_song_versions/e_hurt.png')
Image('files_song_versions/ml_hurt.png')
ML2Eweights = pickleload(os.path.join(files_dir, '1295_ml2e_weights_19'))
emotion_annotations = pickleload(os.path.join(files_dir, '1295_st_all_emo_anns'))
emotion_predictions = pickleload(os.path.join(files_dir, '1295_st_all_emo_preds'))
midlevel_annotations = pickleload(os.path.join(files_dir, '1295_st_all_ml_anns'))
midlevel_predictions = pickleload(os.path.join(files_dir, '1295_st_all_ml_preds'))
ml_versions = pickleload(os.path.join(files_dir, 'ml_hurt'))
import matplotlib.patches as mpatches
blue_patch = mpatches.Patch(color='blue', label=ml_versions.index[0])
orange_patch = mpatches.Patch(color='orange', label=ml_versions.index[1])
fig, ax = plt.subplots(4,2,sharey=True,figsize=(25,30))
emotion_num = 0
vert_spacing=3.6
ml_names_plot = ['melody', 'artic.', 'rh.complx', 'rh.stblty', 'diss.', 'tonal', 'minor']
font = {'size' : 15}
matplotlib.rc('font', **font)
for i in range(ax.shape[0]):
for j in range(ax.shape[1]):
# Calculate effect of midlevel features for current emotion across all songs
effect = np.multiply(midlevel_predictions, ML2Eweights.transpose()[:,emotion_num])
# Get midlevel predictions for song1 and song2 of current emotion
song1_ml = ml_versions.iloc[0]
song2_ml = ml_versions.iloc[1]
# Calculate effect of these midlevel predictions
song1_ml_effect = np.multiply(song1_ml, ML2Eweights.transpose()[:,emotion_num])
song2_ml_effect = np.multiply(song2_ml, ML2Eweights.transpose()[:,emotion_num])
# Plot all effects in boxplot
ax[i][j].boxplot(effect.transpose(), vert=False, positions=np.linspace(1,vert_spacing,7), showfliers=False)
# Plot effects of midlevel for max emotion prediction
scat1 = ax[i][j].scatter(song1_ml_effect,np.linspace(1,vert_spacing,7),color='b', s=95, alpha=0.9)
# Plot effects of midlevel for min emotion prediction
scat2 = ax[i][j].scatter(song2_ml_effect,np.linspace(1,vert_spacing,7),color='orange', s=95, alpha=1)
ax[i][j].set_yticklabels(ml_names_plot);
ax[i][j].tick_params(axis='y', direction='in');
# ax[i][j].set_title(emo_names[emotion_num])
ax[i][j].text(.9,.93,emo_names[emotion_num],horizontalalignment='center', transform=ax[i][j].transAxes)
ax[i][j].axvline(0, alpha=0.5, linestyle='--')
ax[i][j].yaxis.grid(True)
emotion_num += 1
plt.legend(handles=[blue_patch, orange_patch], loc='upper center', bbox_to_anchor=(0.5, -0.1))
fig.subplots_adjust(wspace=0)
# plt.savefig('effects.pdf', dpi=1200, bbox_inches="tight", pad_inches=0)
Image('files_song_versions/e_hallelujah.png')
Image('files_song_versions/ml_hallelujah.png')
ml_versions = pickleload(os.path.join(files_dir, 'ml_hallelujah'))
import matplotlib.patches as mpatches
blue_patch = mpatches.Patch(color='blue', label=ml_versions.index[0])
orange_patch = mpatches.Patch(color='orange', label=ml_versions.index[1])
fig, ax = plt.subplots(4,2,sharey=True,figsize=(25,30))
emotion_num = 0
vert_spacing=3.6
ml_names_plot = ['melody', 'artic.', 'rh.complx', 'rh.stblty', 'diss.', 'tonal', 'minor']
font = {'size' : 15}
matplotlib.rc('font', **font)
for i in range(ax.shape[0]):
for j in range(ax.shape[1]):
# Calculate effect of midlevel features for current emotion across all songs
effect = np.multiply(midlevel_predictions, ML2Eweights.transpose()[:,emotion_num])
# Get midlevel predictions for song1 and song2 of current emotion
song1_ml = ml_versions.iloc[0]
song2_ml = ml_versions.iloc[1]
# Calculate effect of these midlevel predictions
song1_ml_effect = np.multiply(song1_ml, ML2Eweights.transpose()[:,emotion_num])
song2_ml_effect = np.multiply(song2_ml, ML2Eweights.transpose()[:,emotion_num])
# Plot all effects in boxplot
ax[i][j].boxplot(effect.transpose(), vert=False, positions=np.linspace(1,vert_spacing,7), showfliers=False)
# Plot effects of midlevel for max emotion prediction
scat1 = ax[i][j].scatter(song1_ml_effect,np.linspace(1,vert_spacing,7),color='b', s=95, alpha=0.9)
# Plot effects of midlevel for min emotion prediction
scat2 = ax[i][j].scatter(song2_ml_effect,np.linspace(1,vert_spacing,7),color='orange', s=95, alpha=1)
ax[i][j].set_yticklabels(ml_names_plot);
ax[i][j].tick_params(axis='y', direction='in');
# ax[i][j].set_title(emo_names[emotion_num])
ax[i][j].text(.9,.93,emo_names[emotion_num],horizontalalignment='center', transform=ax[i][j].transAxes)
ax[i][j].axvline(0, alpha=0.5, linestyle='--')
ax[i][j].yaxis.grid(True)
emotion_num += 1
plt.legend(handles=[blue_patch, orange_patch], loc='upper center', bbox_to_anchor=(0.5, -0.1))
fig.subplots_adjust(wspace=0)
Image('files_song_versions/e_ipanema.png')
Image('files_song_versions/ml_ipanema.png')
ml_versions = pickleload(os.path.join(files_dir, 'ml_ipanema'))
import matplotlib.patches as mpatches
red_patch = mpatches.Patch(color='red', label=ml_versions.index[0])
blue_patch = mpatches.Patch(color='blue', label=ml_versions.index[1])
green_patch = mpatches.Patch(color='green', label=ml_versions.index[2])
fig, ax = plt.subplots(4,2,sharey=True,figsize=(25,30))
emotion_num = 0
vert_spacing=3.6
ml_names_plot = ['melody', 'artic.', 'rh.complx', 'rh.stblty', 'diss.', 'tonal', 'minor']
font = {'size' : 15}
matplotlib.rc('font', **font)
for i in range(ax.shape[0]):
for j in range(ax.shape[1]):
# Calculate effect of midlevel features for current emotion across all songs
effect = np.multiply(midlevel_predictions, ML2Eweights.transpose()[:,emotion_num])
# Get midlevel predictions for song1 and song2 of current emotion
song1_ml = ml_versions.iloc[0]
song2_ml = ml_versions.iloc[1]
song3_ml = ml_versions.iloc[2]
# Calculate effect of these midlevel predictions
song1_ml_effect = np.multiply(song1_ml, ML2Eweights.transpose()[:,emotion_num])
song2_ml_effect = np.multiply(song2_ml, ML2Eweights.transpose()[:,emotion_num])
song3_ml_effect = np.multiply(song3_ml, ML2Eweights.transpose()[:,emotion_num])
# Plot all effects in boxplot
ax[i][j].boxplot(effect.transpose(), vert=False, positions=np.linspace(1,vert_spacing,7), showfliers=False)
# Plot effects of midlevel for max emotion prediction
scat1 = ax[i][j].scatter(song1_ml_effect,np.linspace(1,vert_spacing,7),color='r', s=95, alpha=0.7)
# Plot effects of midlevel for min emotion prediction
scat2 = ax[i][j].scatter(song2_ml_effect,np.linspace(1,vert_spacing,7),color='b', s=95, alpha=1)
scat3 = ax[i][j].scatter(song3_ml_effect,np.linspace(1,vert_spacing,7),color='g', s=95, alpha=0.7)
ax[i][j].set_yticklabels(ml_names_plot);
ax[i][j].tick_params(axis='y', direction='in');
# ax[i][j].set_title(emo_names[emotion_num])
ax[i][j].text(.9,.93,emo_names[emotion_num],horizontalalignment='center', transform=ax[i][j].transAxes)
ax[i][j].axvline(0, alpha=0.5, linestyle='--')
ax[i][j].yaxis.grid(True)
emotion_num += 1
plt.legend(handles=[red_patch, blue_patch, green_patch], loc='upper center', bbox_to_anchor=(0.5, -0.1))
fig.subplots_adjust(wspace=0)