

Towards Better Features for Music Emotion Recognition: A Machine Learning Approach

Shreyan Chowdhury 19.08.2021 | MAPLE Lab, McMaster University

Outline

- Part 1: Background
 - The Con Espressione Project
 - Machine learning refresher
 - Feature extraction for music content analysis
 - Mid-level features
- Part 2: Emotion in Bach's Well Tempered Clavier
 - About the data
 - Feature extraction
 - Comparison of feature sets

Part 1: Background

The Con Espressione Project

https://www.jku.at/en/institute-of-computational-perception/research/projects/con-espressione

Model training (optimizing model parameters to minimize *loss*, which is a function of the data and model parameters)

Typical Features for Music Content Analysis

- Time-domain features
 - Amplitude
 - Energy
 - Zero-crossing rate

- Mixed features
 - Onset
 - Pitch
 - Tempo
 - Beats

- Frequency-domain features
 - Spectral centroid
 - Spectral flux
 - Mel-frequency cepstral coefficients
 - Spectral peaks

Low-level features

The Semantic Gap

Low-level features

Unambiguously defined and objectively verifiable

High-level features (e.g. emotion)

Concepts that can only be defined by considering multiple aspects of music

Features to Bridge the Gap?

Low-level features

Mid-level Features

Unambiguously defined and objectively verifiable

Perceptual and subjective, but make intuitive musical sense

(everything in between)

High-level features (e.g. emotion)

Concepts that can only be defined by considering multiple aspects of music

Features to Bridge the Gap?

Why Mid-level Features?

- Better representations of musical concepts
 - Unaffected by recording artefacts
 - Closer to human perception
- Better handle on search and retrieval
- Add interpretability/explainability to high-level concept models
- May improve prediction accuracy

Mid-level Features through Data

Perceptual Feature	Question asked to human raters		
Melodiousness	To which excerpt do you feel like singing along?		
Articulation	Which has more sounds with staccato articulation?		
Dhatharia Stabilita	Imagine marching along with the music.		
Kilytilline Stability	Which is easier to march along with?		
Rhythmic Complexity	Is it difficult to repeat by tapping?		
	Is it difficult to find the meter?		
	Does the rhythm have many layers?		
Disconance	Which excerpt has noisier timbre?		
Dissoliance	Has more dissonant intervals (tritones, seconds, etc.)?		
Tonal Stability	Where is it easier to determine the tonic and key?		
Tollar Stability	In which excerpt are there more modulations?		
Modality ('Minorness')	Imagine accompanying this song with chords.		
Wiodanty (Willottiess)	Which song would have more minor chords?		

Learning to Predict Mid-level Features

1	song_id	melody	articulation	rhythm_complexity	rhythm_stability	dissonance	atonality	mode
2	1.0	8.8	4.0	4.0	6.7	3.4	7.4	6.0
3	2.0	9.0	2.8	2.3	8.0	2.2	7.6	3.8
4	3.0	7.6	8.0	6.3	7.7	3.2	6.6	4.8
5	4.0	7.2	3.2	5.0	6.3	2.4	7.8	6.2
6	5.0	8.0	3.8	4.8	6.5	2.6	7.2	6.2

<u>S. Chowdhury</u>, A. Vall, V. Haunschmid, and G. Widmer, "*Towards Explainable Music Emotion Recognition: The Route via Mid-level Features*," in Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019

16

Mid-level Features for Explainable Emotion Recognition

Mid-level Features for Explainable Emotion Recognition

Training labels: both mid-level and emotion annotations

Mid-level Features for Explainable Emotion Recognition

Learned weights of the linear layer

<u>S. Chowdhury</u>, A. Vall, V. Haunschmid, and G. Widmer, "*Towards Explainable Music Emotion Recognition: The Route via Mid-level Features*," in Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019

Part 2: Emotion in WTC

Performance Aspect of Music Emotion

"Singing, with intimate sentiment" "Singing and expressive"

Beethoven - Piano Sonata No.30

Research Questions

- Modeling perceived emotion in Bach's *Well Tempered Clavier Book 1.*
 - Comparison of feature sets:
 - Low-level audio features
 - Score-based features
 - Mid-level features
 - Emotion features

- In each feature set, which features are the most important?
- Which feature set best explains variation of arousal and valence
 - between pieces?
 - between different performances of the same piece?

Research Questions

• Modeling perceived <u>emotion</u> in Bach's *Well Tempered Clavier Book 1*.

Data – WTC Recordings and Emotion Ratings

- 288 performances of the WTC (48 pieces played by 6 different pianists)
 - Glenn Gould
 Sviatoslav Richter
 - Friedrich Gulda
 András Schiff
 - Angela Hewitt Rosalyn Tureck
- First 8 bars
- Arousal (0 to 100) and valence (-5 to +5) ratings by University students
- Each track rated by 29 participants

Distribution of Mean Emotion Ratings by Piece

- Low-level audio features:
 - o Essentia/Librosa
 - 11 features + mean and standard deviation for each feature across a clip
 - Time domain, frequency-domain, and mixed domain features
 - Loudness, onset rate, pitch salience, spectral centroid, tempo, etc.
- Score-based features:
 - Computed from sheet music
 - Onset density, pitch density, mode, key strength, inter onset interval.

- Mid-level features:
 - 0

- Mid-level features:
 - ResNet model pre-trained with the Mid-level Dataset 0

- Emotion features:
 - 0

- Emotion features:
 - ResNet model pre-trained with the DEAM Dataset
 - Extract penultimate layer representations for WTC
 - 512 features per clip
 - Perform Principal Component Analysis to reduce feature space
 - Obtain 9 components that explain 98% of variance
 - "DEAMResNet" features

Feature Comparison

- Ordinary least squares fitting
- Regression metrics:
 - Adjusted R2 score, Root mean squared error (RMSE), Pearson's correlation coefficient
 - Fraction of variance unexplained
- Feature importance metric:
 - **T-statistic** $t = \frac{\hat{\beta}}{\operatorname{SE}(\hat{\beta})}$
- Mixed model regression metric:
 - Fraction of residual variance explained

Performance on only Gulda's Recording

	Arousal			Valence			
	$ ilde{R}^2$	RMSE	Corr	$ ilde{R}^2$	RMSE	Corr	
Mid-level	0.84	0.36	0.93	0.79	0.42	0.91	
DEAMResNet	0.91	0.27	0.96	0.69	0.50	0.86	
Low-level	0.86	0.29	0.96	0.67	0.45	0.89	
Score	0.31	0.74	0.67	0.61	0.55	0.83	
B&S (exp 3)	0.48	(- 1	-	0.75	-	-	

Performance on the Complete Dataset

	Arousal			Valence		
Feature Set	$ ilde{R}^2$	RMSE	Corr	$ ilde{R}^2$	RMSE	Corr
Mid-level	0.68	0.56	0.83	0.63	0.60	0.80
DEAMResNet	0.70	0.54	0.84	0.42	0.72	0.69
Low-level	0.62	0.59	0.81	0.41	0.74	0.67
Score	0.41	0.75	0.65	0.75	0.49	0.87

	Piece-wise		Pianis	t-wise	LOO	
Feature Set	A	V	A	V	A	V
Mid-level	0.68	0.63	0.68	0.64	0.69	0.65
DEAMResNet	0.67	0.37	0.61	0.41	0.68	0.43
Low-level	0.54	0.20	-0.11	-0.05	0.57	0.30
Score	0.08	0.67	0.39	0.75	0.37	0.74

Fitting

Feature Importance among Audio-based Features

UNIVERSITY LINZ

Testing Piece-wise Variation

$$E_{random} = \frac{Var_{random}}{Var_{random} + Var_{residual}}$$

Linear mixed models

All features + Random intercept (piece id)

Feature Set	Arousal	Valence
Mid-level	0.50	0.86
DEAMResNet	0.47	0.89
Low-level	0.66	0.90
Score	0.63	0.68

Fraction of residual variance explained by the random effect of "piece id".

Testing Performance-wise Variation

- Overall means (of arousal or valence) are almost identical for all pianists
 - Linear mixed models cannot be used
- Train on 47 pieces and test on the remaining piece
- Metric: Fraction of Variance Unexplained

		Arousal		Valence
Feature Set	FVU	Corr (p<0.1)	FVU	Corr (p<0.1)
Mid-level	0.31	0.58 (47.9%)	0.36	0.42 (27.0%)
DEAMResNet	0.32	0.54 (43.8%)	0.61	0.47 (37.5%)
Low-level	0.43	0.56 (54.2%)	0.75	0.38 (22.9%)

Generalizing Power: Predicting Emotion of Outliers

• Held out data: 48 outlier performances (one for each piece)

Generalizing Power: Predicting Emotion of Outliers

