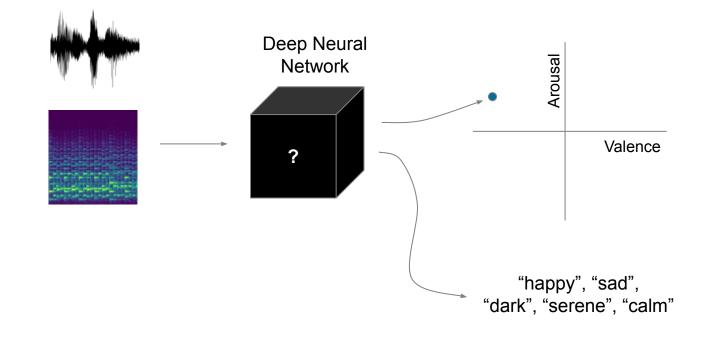


Deep Learning Approaches for Predicting and Explaining Emotions in Music


Shreyan Chowdhury Supervisor: Prof. Gerhard Widmer 30.09.2021 Dissertation Colloquium

Background

Music Emotion Recognition and Explainability

Con Espressione!

Bach Prelude No.2 in C minor

Glenn Gould

Friedrich Gulda

Approaches

➡ 1. Mid-level Features as Explanatory Variables

- 2. Transferring Mid-level Features to Solo Piano Music
- 3. Modeling Emotion in Bach's Well-Tempered Clavier
- 4. Two-level Explanations

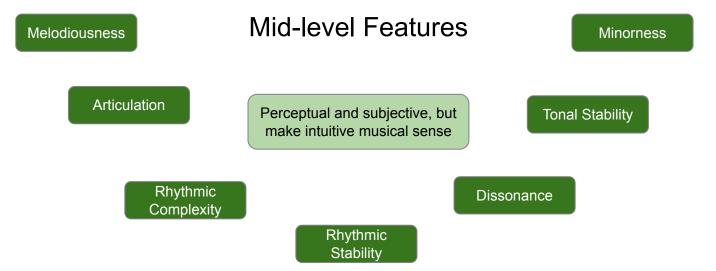
What are Mid-level Features?

Low-level features

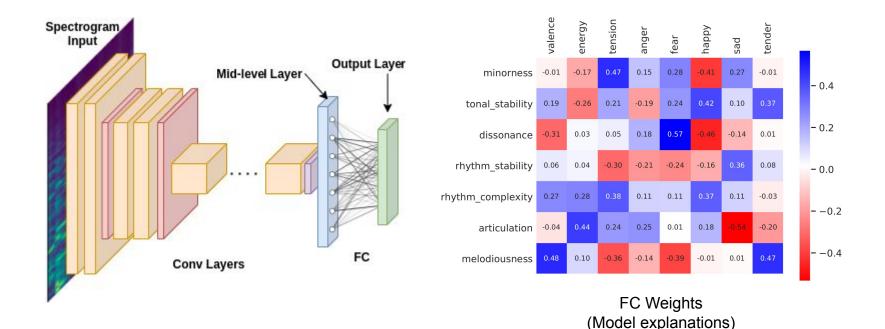
Unambiguously defined and objectively verifiable

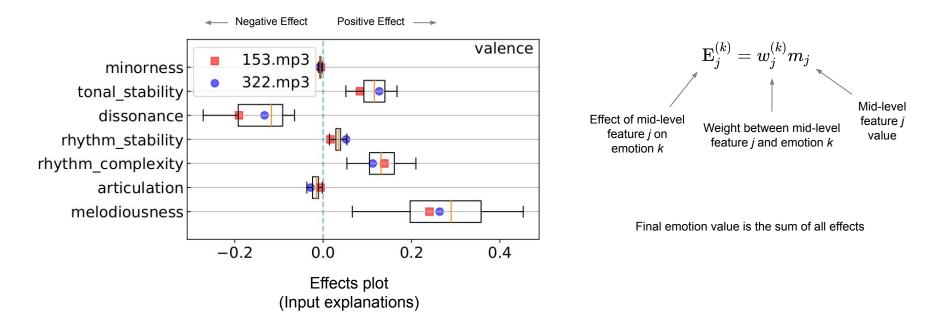
Mid-level Features

Perceptual and subjective, but make intuitive, musical sense


High-level features

Concepts that can only be defined by considering multiple aspects of music


What are Mid-level Features?


Learning Mid-level Features as Intermediate Variables

<u>S. Chowdhury</u>, A. Vall, V. Haunschmid, and G. Widmer, "*Towards Explainable Music Emotion Recognition: The Route via Mid-level Features*," in Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019

68

Interpreting Individual Mid-level Predictions

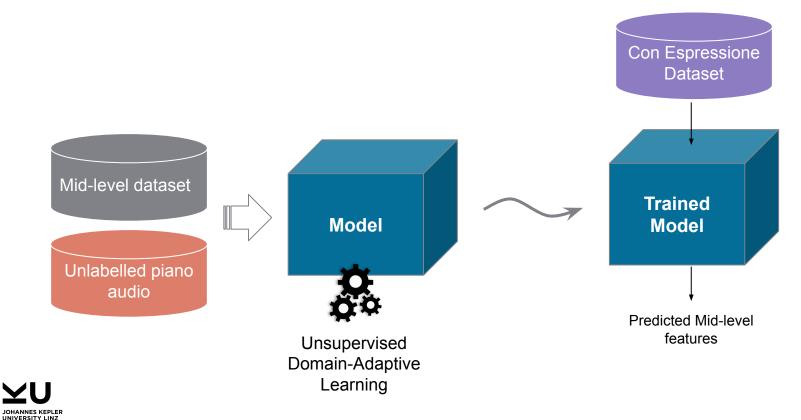
<u>S. Chowdhury</u>, A. Vall, V. Haunschmid, and G. Widmer, "*Towards Explainable Music Emotion Recognition: The Route via Mid-level Features*," in Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019

Approaches

1. Mid-level Features as Explanatory Variables

➡2. Transferring Mid-level Features to Solo Piano Music

- 3. Modeling Emotion in Bach's Well-Tempered Clavier
- 4. Two-level Explanations


Research Question

- How to reduce performance drop for Con Espressione out-of-domain music? Dataset Trained Model Mid-level dataset Model Predicted Mid-level
 - features

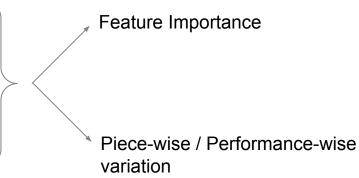
Transfer Scenario: Domain Adaptation

G

Domain Adaptation Results

<u>S. Chowdhury</u> and G. Widmer, "Towards Explaining Expressive Qualities in Piano Recordings: Transfer of Explanatory Features via Acoustic Domain Adaptation", In Proc. of the International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021)

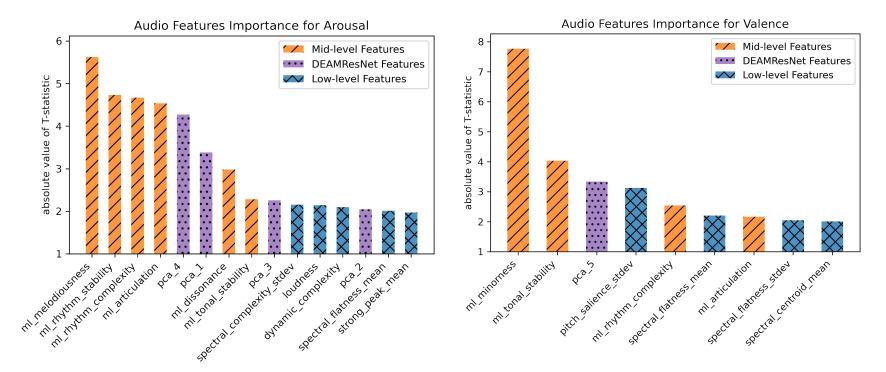
Approaches


- 1. Mid-level Features as Explanatory Variables
- 2. Transferring Mid-level Features to Solo Piano Music
- ⇒ 3. Modeling Emotion in Bach's Well-Tempered Clavier
 - 4. Two-level Explanations

Research Questions

• 48 pieces, 6 performances of Bach's Well Tempered Clavier Book 1

Comparison of feature sets:


- Low-level audio features
- Score-based features
- Mid-level features
- Emotion features

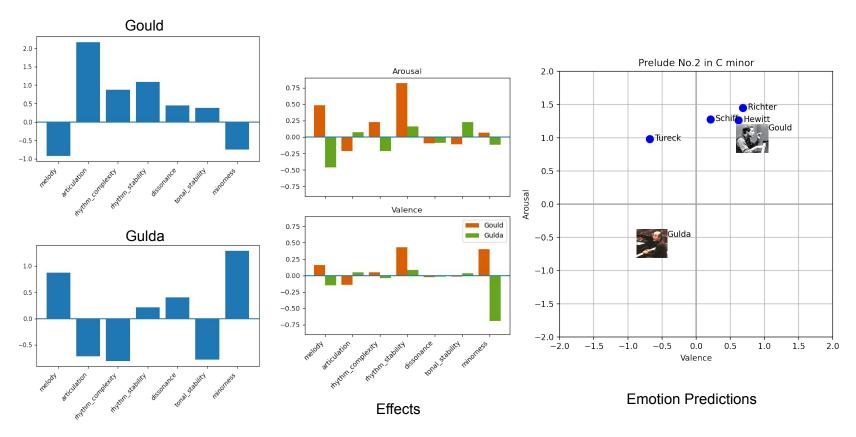
Feature Importance among Audio-based Features

<u>S. Chowdhury</u> and G. Widmer, "On Perceived Emotion in Expressive Piano Performance: Further Experimental Evidence for the Relevance of Mid-level Features", In Proc. of the 22nd International Society for Music Information Retrieval Conference (ISMIR 2021)

Modeling Piece-wise and Performance-wise Variation

Feature Set	Arousal	Valence
Mid-level	0.50	0.86
DEAMResNet	0.47	0.89
Low-level	0.66	0.90
Score	0.63	0.68

Fraction of residual variance explained
by the random effect of "piece id".


	Arousal		Valence	
Feature Set	FVU	Corr (p<0.1)	FVU	Corr (p<0.1)
Mid-level	0.31	0.58 (47.9%)	0.36	0.42 (27.0%)
DEAMResNet	0.32	0.54 (43.8%)	0.61	0.47 (37.5%)
Low-level	0.43	0.56 (54.2%)	0.75	0.38 (22.9%)

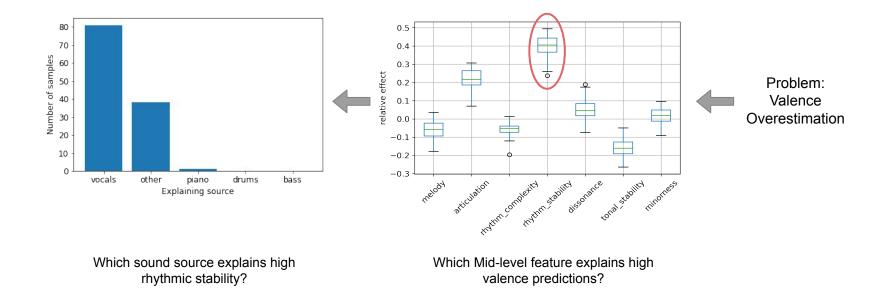
Fraction of variance between different performances of a piece unexplained by the feature set

S. Chowdhury and G. Widmer, "On Perceived Emotion in Expressive Piano Performance: Further Experimental Evidence for the Relevance of Mid-level Features", In Proc. of the 22nd International Society for Music Information Retrieval Conference (ISMIR 2021)

Approaches

- 1. Mid-level Features as Explanatory Variables
- 2. Transferring Mid-level Features to Solo Piano Music
- 3. Modeling Emotion in Bach's Well-Tempered Clavier
- ➡4. Two-level Explanations

Research Questions


- How to explain the black-box between the input and Mid-level features?
- Can we use explanations for model debugging?

Two-level Explanations for Valence in Hiphop Songs

 <u>S. Chowdhury</u>, V. Praher, G. Widmer, "*Tracing Back Music Emotion Predictions to Sound Sources and Intuitive Perceptual Qualities*", In Proc. of the Sound and Music Computing Conference, (SMC 2021)

Publications

1. <u>Shreyan Chowdhury</u>, Gerhard Widmer

"On Perceived Emotion in Expressive Piano Performance: Further Experimental Evidence for the Relevance of Mid-level Features" (*ISMIR 2021*)

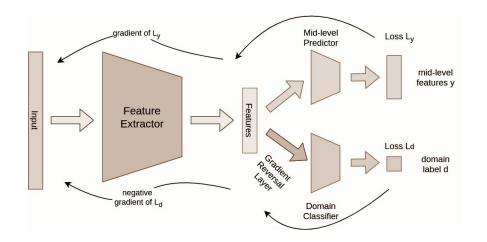
- <u>Shreyan Chowdhury</u>, Verena Praher, Gerhard Widmer "Tracing Back Music Emotion Predictions to Sound Sources and Intuitive Perceptual Qualities" (SMC 2021)
- <u>Shreyan Chowdhury</u>, Gerhard Widmer
 "Towards Explaining Expressive Qualities in Piano Recordings: Transfer of Explanatory Features via Acoustic Domain Adaptation" (*ICASSP 2021*)
- 4. <u>Shreyan Chowdhury</u>, Andreu Vall, Verena Haunschmid, Gerhard Widmer "Towards Explainable Music Emotion Recognition: The Route via Mid-level Features" (*ISMIR 2019*)

Publications

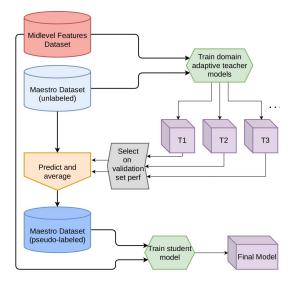
- Carlos Cancino-Chacon, Silvan Peter, <u>Shreyan Chowdhury</u>, Anna Aljanaki, Gerhard Widmer "On the Characterization of Expressive Performance in Classical Music: First Results of the Con Espressione Game" (*ISMIR 2020*)
- Khaled Koutini, <u>Shreyan Chowdhury</u>, Verena Haunschmid, Hamid Eghbal-zadeh, Gerhard Widmer "Emotion and Theme Recognition in Music with Frequency-Aware RF-Regularized CNNs" (*MediaEval Multimedia Benchmark 2019*)
- Verena Haunschmid, <u>Shreyan Chowdhury</u>, Gerhard Widmer "Two-level Explanations in Music Emotion Recognition" (*ML4MD Workshop, ICML 2019*)

Other Output

- 1. Invited talk at MAPLE Lab McMaster University, Hamilton, Canada "Towards Better Featuresfor Music Emotion Recognition: A Machine Learning Approach" (August 2021).
- 2. First rank in MediaEval Emotion and Mood recognition challenge (October 2019).
- 3. Invited talk at Acoustics Research Institute, "OAW, Vienna, Austria "Explainable Models and their Application in Music Emotion Recognition" (October 2018).
- 4. Reviewer for ISMIR 2020 and ISMIR 2021

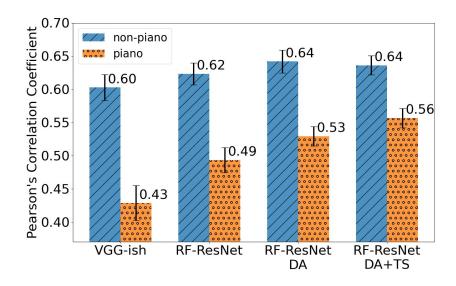


Extra slides ...



Domain Adaptation Procedure

Unsupervised Domain Adaptation



Teacher-Student Refining

Domain Adaptation Results

RF-ResNet		RF-ResNet DA+TS		
Feature	r	Feature	r	
articulation	0.47	melodiousness	- 0.39	
rhythmic complexity	0.41	articulation	0.46	
		rhythmic complexity	0.41	
		dissonance	0.40	

